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Abstract. Accurate dose map prediction is key to external radiother-
apy. Previous methods have achieved promising results; however, most of
these methods learn the dose map as a black box without considering the
beam-shaped radiation for treatment delivery in clinical practice. The
accuracy is usually limited, especially on beam paths. To address this
problem, this paper describes a novel “disassembling-then-assembling”
strategy to consider the dose prediction task from the nature of radio-
therapy. Specifically, a global-to-beam network is designed to first pre-
dict dose values of the whole image space and then utilize the proposed
innovative beam masks to decompose the dose map into multiple beam-
based sub-fractions in a beam-wise manner. This can disassemble the
difficult task to a few easy-to-learn tasks. Furthermore, to better capture
the dose distribution in region-of-interest (ROI), we introduce two novel
value-based and criteria-based dose volume histogram (DVH) losses to
supervise the framework. Experimental results on the public OpenKBP
challenge dataset show that our method outperforms the state-of-the-art
methods, especially on beam paths, creating a trustable and interpretable
AI solution for radiotherapy treatment planning. Our code is available
at https://github.com/ukaukaaaa/BeamDosePrediction.
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Fig. 1. (a) Demonstration of external radiotherapy with beam-shaped radiation. (b)
Different slices of dose map with clear beam paths.

1 Introduction

External radiotherapy is a mainstream therapy widely used for head and neck
cancer treatment. Its efficacy highly relies on high-quality treatment plans, in
which a dose volume is elaborately designed to deliver a prescribed dose of radi-
ation to the tumor while minimizing the irradiation received by organs-at-risk
(OARs). In clinical workflow, this procedure is often accomplished by physicians
manually adjusting numerous planning parameters and weights in a trial-and-
error manner [2,4,7], which is not only time-consuming but also requires a great
level of expertise. Hence, it is greatly demanded to develop an automatic method
to predict accurate dose map for cancer treatment planning.

In recent years, due to the explosive development of machine learning tech-
niques [11,13], many deep learning-based methods have been proposed to handle
this challenging task. The prior efforts can be generally categorized into three
groups. The first group of methods focuses on designing variant neural network
architectures. For example, Liu et al. [6] have designed a cascaded 3D U-Net
model, incorporating global and local anatomical features. The second group
uses novel loss functions. Ngyuen et al. [10] have demonstrated that more accu-
rate dose map can be generated when DVH loss is included. The last line meth-
ods propose to exploit additional prior knowledge and integrate into the network
learning, including the gradient information [12] and distance information [15].

In external radiotherapy, treatment is achieved by delivering the radiation
from several different directions (Fig. 1). Each direction of radiation will result
in a beam-shaped dose volume. Due to the beam-wise delivery manner, the
resulting dose volume often exhibits sharp edges near the beam boundary. The
dose intensities inside the beam regions are much higher than those outside the
beam regions. However, such critical prior knowledge is hardly considered in the
previous methods, which often leads to some unsatisfying dose distributions on
the beam paths and finally affects the prediction performance. This is because
the input CT images do not contain any knowledge of the radiation beams.
Thus, it is difficult for the deep network to infer the dose distribution accurately
without extra prior knowledge of the beam shapes.
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Fig. 2. An overview of our proposed method framework, including (a) global coarse
dose prediction and (b) beam-wise dose prediction based on decomposition and multi-
beam voting mechanism.

In this paper, to tackle the aforementioned challenges, we present a novel
beam mask definition and take it as a prior knowledge for deep network train-
ing. To fully utilize this knowledge, a global-to-beam network embedded with
multiple innovative strategies is used to conduct the dose prediction task from
global to local, denoted as “disassembling-then-assembling” strategy. Specifi-
cally, in the first stage, we adopt Global Dose Network to coarsely predict the
dose map, and simultaneously generate beam masks according to pre-defined
angles and the planning target volume (PTV) masks. Then, in the second stage,
we fine-tune the dose map through three novel strategies described as follows.

The main contributions of this work are three-fold. 1) The coarse dose map is
guided by multiple beam masks from different angles, and decomposed into sev-
eral sub-fractions of dose map (i.e., disassembling). Each sub-fraction is respon-
sible for the prediction of corresponding beam path. 2) A multi-beam voting
mechanism is proposed to reconstruct the final dose map, in which each voxel
value is only determined by the sub-fractions containing that voxel (i.e., assem-
bling). 3) We introduce a value-based DVH loss and a criteria-based DVH loss to
focus on ROI regions more accurately and efficiently. To validate our proposed
method, extensive experiments have been conducted and show that our method
outperforms the state-of-art approaches both qualitatively and quantitatively.

2 Method

Although previous methods have achieved promising performance, we still find
many regions with inaccurately-predicted dose values, especially along the beam
paths. To solve this problem, we introduce a novel beam mask generator and a
global-to-beam network by first predicting dose values of the whole image space
and then decomposing the dose map into multiple beam voters by utilizing the
proposed beam masks to conduct beam-wise dose prediction. The framework
of our proposed method is illustrated in Fig. 2 with details described in the
following sub-sections.
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Fig. 3. Demonstration of beam mask generation.

2.1 Global Coarse Dose Prediction

In our framework, the input includes CT image, PTV, and OAR masks. Specif-
ically, CT provides anatomical information. PTV indicates cancer region infor-
mation (requiring high dose radiation), and OAR masks refer to normal tissues.
As shown in Fig. 2, we first employ Global Dose Network to coarsely predict
dose values of the whole image space. More importantly,before Beam-wised Dose
Network at second-staged, we introduce additional prior knowledge (i.e., beam
masks) that is helpful for dose map refinement.

2.2 Beam-Wise Dose Prediction

The output of the first stage is a coarse dose map, in which the basic shape
of the PTV region and dose values are predicted roughly, especially for the
results on the beam paths. To solve this problem, we generate beam masks
according to the pre-defined angles and PTV masks. Then, Beam-wise Dose
Network at the second stage refines the dose map in the manner of decomposition
and voting strategies. The critical components in beam-wise dose prediction
model are elaborated as below.

Beam Mask Generator. Introducing the beam information as a prior knowl-
edge can provide a more targeted manner for predicting dose values on the beam
paths. However, the beam information is not provided in most datasets. Thus,
the main problem is how to acquire and represent such important information.
To address this challenge, we propose a beam mask generator (Fig. 3). The beam
path is mainly related to the location of PTV and the angle of the beam. Since
the PTV location is different on each slice, we build the beam mask slice-by-slice
to make it more suitable for the beam path, which can be defined as:

B(t) = F (θ,Et), (1)

where θ refers to the angle and Et includes the coordinates of PTV edges on the
t-th slice. The detailed process of F (·) is to first calculate the slope of the beam
and then utilize the points on edge boundary to find the intercept, resulting in
two lines at the end. The region between these two lines represents the respective
beam mask.
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Decomposition of Dose Map. In each slice of dose map, there are usu-
ally more than one beam paths, whose angles and dose value distributions are
different, causing the difficulty to jointly fine-tune all beam path regions. Differ-
ent from the existing dose prediction techniques, our proposed method predicts
multiple sub-fractions of the dose map, named beam voter. Each beam voter is
responsible for the dose prediction on one beam mask. By decomposing the dose
prediction of a whole image space into a set of beam-based prediction tasks, it is
relatively easier for the refinement network to learn features of each beam-mask
region. In the training process, we use a multi-beam MAE loss to supervise the
prediction on each beam-mask region independently, which can be defined as:

Lm =
1
Ni

Ni∑

i=1

|Pi − Gi| , (2)

where Pi and Gi refer to the prediction and the ground truth of the i-th beam
voter. Ni denotes the maximum number of the beam voters.

Multi-beam Voting. The output of the refinement network in the second stage
is multiple beam voters, each of which represents one sub-region of the final dose
map. To merge these beam voters, we propose a Multi-Beam Voting mechanism,
in which the dose value of each voxel is finally predicted and voted by the beams
passing this voxel. Note that if it is only passed by one single beam, its dose value
will be set by the same location on the corresponding beam voter. On the other
hand, if a voxel is passed by multiple beams, all beam voters are responsible for
this voxel to generate the final dose value by an average voting operation. After
voting, we use MAE loss Lr to supervise the final prediction.

2.3 Training Objective

Value-Based DVH Loss. As a commonly used metric in radiotherapy, DVH
has been considered as an important tool to enhance the dose prediction quality
in ROI. Although many existing methods have proposed DVH loss [10] to calcu-
late the volume difference between prediction and ground-truth DVH curves, it
requires repeated image-based computations since a processing of the whole 3D
image is needed for each dose value threshold. If we reduce the computational
consumption by increasing the threshold interval, it would lose the accuracy to
fit the ground-truth DVH curve. Hence, we proposed a value-based DVH loss to
balance the efficiency and accuracy, which is defined as follows:

LvDVH =

∑
s=1

∑Ns

n=1

∣∣∣R(Ŷ · Ms)n − R(Y · Ms)n
∣∣∣

∑
s=1 Ns

, (3)



580 B. Wang et al.

where Ms denotes the ROI masks. R(·) is a sort operation. Ŷ and Y refer to the
prediction and ground-truth dose maps, respectively.

Specifically, we first use the ROI mask to extract the dose values in ROI region
and obtain the DVH curve by conducting the sort operation. Then, we compute
the difference between the prediction and the ground-truth DVH to supervise the
network. In this way, the volume information can be represented by the rank of
sorted dose values, with no hyper-parameter set in this loss function. Note that
only one round computation is needed on the whole image, and the processing
is directly employed on the dose values, which is more efficient and accurate.

Criteria-Based DVH Loss. In clinical treatment planning, the quality of
the planning dose is evaluated by checking a set of critical points on the DVH
curve, such as Cptv

1 , Cptv
95 , Cptv

99 , Coar
0.1cc, and Coar

mean, which indicate the dose values
received by the top-ranked 1%, 95%, 99% volume of PTV, the dose value received
by the top-ranked 0.1cc volume of OAR, and the mean dose received by OAR,
respectively. We represent these criteria by calculating the sorted dose values
ranked at the 99th, 5th, and 1st percentile inside the PTVs, and the maximum
and mean of sorted dose values inside the OARs, respectively. Then, we define
criteria-based DVH loss as

LcDV H = Dptv
1 + Dptv

95 + Dptv
99 + Doar

0.1cc + Doar
mean, (4)

where Dptv
1 ,Dptv

95 ,Dptv
99 ,Doar

0.1cc,D
oar
mean are the difference between prediction and

the ground truth calculated at the corresponding criteria.
Finally, the total loss function will be elaborated as below:

L = Lr + αLvDVH + βLcDV H (5)

where α and β are hyper-parameters to balance the two DVH loss terms.

3 Experiment

We evaluate our proposed method on the public OpenKBP dataset [1] from 2020
AAPM Grand Challenge, which includes 340 head and neck cancer patients (200
for training, 40 for validation, and 100 for testing). For each patient, paired CT
scan, OAR mask, PTV mask, possible dose mask, and ground-truth dose map
are provided with the same size of 128 × 128 × 128. The model performance is
tracked with two metrics used in the Challenge above, i.e., Dose score and DVH
score. Moreover, we introduce the DVH curve as another tool to evaluate the
accuracy of dose prediction in ROI.
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Fig. 4. Visualization of our proposed method and SOTA methods. An obvious improve-
ment on beam paths can be seen in the red enlarged boxes. (Color figure online)

For the first stage of coarse prediction, random rotation ranged from -20◦ to
20◦ and random flip along Z-axis are performed to augment the data. Note that
the PTV masks and OAR masks are merged in one mask, where the different
mask was assigned with a different label. The beam masks are generated based
on Eq. (1), where θ is set according to the pre-defined angles in the dataset
[1]. Both Global Dose Net and Beam-wise Dose Net have a U-Net structure. To
supervise the networks, the Adam optimizer with an initial learning rate of 1e−4
is used during the training process. And each epoch takes about two minutes on
a GPU of NVIDIA Tesla M40 24 GB.

Table 1. Quantitative comparison with state-of-the-art methods (*: no released code;
†: p-value < 0.05).

Method Dose score [Gy] DVH score [Gy]

V-Net [8] 2.922± 1.166† 1.545± 1.178†

Xu et al. [14] 2.753∗ 1.559∗

Zimmermann et al. [16] 2.620± 1.100
∗

1.520± 1.060
∗

HD U-net [9] 2.592± 1.048† 1.643± 1.123†

Gronberg et al. [3] 2.563± 1.143† 1.704± 1.096†

C3D [6] 2.429± 1.031† 1.478± 1.182†

Lin et al. [5] 2.357∗ 1.465∗

Ours 2.276±1.013 1.257±1.163
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3.1 Comparison with State-of-the-Art Methods

To validate the advantage of our proposed method, we compare with state-of-
the-art methods, including V-Net [8], Xu et al. [14], Zimmermann et al. [16], HD
U-net [9], Gronberg et al. [3] and C3D [6], which won the first and second place
on the 2020 AAPM challenge learderboard [1], respectively, and Lin et al. [5].

The quantitative results are shown in Table 1. Our method significantly out-
performs existing methods, in terms of dose score and DVH score. Moreover, we
can see from the visualization results of dose maps in Fig. 4 that our prediction
matches better with the ground truth, especially on the beam paths. We also
provide the DVH curves of the prediction and the ground truth in Fig. 5 showing
that our DVH curves are closer to the ground-truth DVH curves.

Fig. 5. Visualization of DVH curves by our method and SOTA methods, including
DVH curves of PTV70, Larynx, and Esophagus.

3.2 Ablation Study

In this study, we take a cascaded 3D U-Net as the Baseline model and evaluate
the effectiveness of two key components of our proposed method: (1) beam-wise
dose prediction (BDP) including the decomposition of dose map and multi-beam
voting scheme, and (2) valued-based DVH loss (LvDVH) and criteria-based DVH
loss (LcDV H). The quantitative results are presented in Table 2. It can be seen
that BDP improves the prediction accuracy (46.1% improvements in terms of
dose score), indicating that the introduction of the beam masks facilitates the
network to learn more features from beam paths region. Then, adding LvDVH

shows 10.8% improvement of DVH score and also makes prediction of dose map
more efficient, i.e., reducing the computational time from 6 min an epoch by pre-
vious DVH loss [10] to 2 min an epoch. Additionally, due to the fact that LcDV H

incorporates key criteria of treatment plannings in clinics, it helps promote dose
score by 12.2% and dvh score by 20.2%, making our prediction the best result
in this dose prediction task.
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Table 2. Ablation study of our method, evaluated with dose score and DVH score.

Baseline BDP LvDV H LcDV H Dose score [Gy] DVH score [Gy]

� 2.862± 1.049 1.586± 1.146

� � 2.401± 1.033 1.567± 1.179

� � � 2.398± 1.011 1.459± 1.212

� � � � 2.276±1.014 1.257±1.163

4 Conclusion

We describe a novel “disassembling-then-assembling” strategy and propose a
global-to-beam framework to accurately conduct the dose prediction task. The
proposed method first learns the whole image space of the dose map and then
decomposes it into beam-based sub-fractions by proposed beam masks. More-
over, we get the final dose map by utilizing multi-beam voting strategy. Besides,
we propose two novel value-based and criteria-based DVH loss to focus on ROI
region efficiently. Experimental results demonstrate our method can more pre-
cisely predict dose map compared with state-of-the-art methods. The predicted
dose is very close to the physically deliverable one and thus can be used as a
good starting point in treatment planning, substantially reducing the time and
inter-observer variations in clinical workflow. We aim to leverage this method to
create trustable and interpretable AI solution for radiotherapy.
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