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ABSTRACT
The multivariate generalized Gaussian distribution has been
used intensively in various data analytics fields. Due to its
flexibility in modeling different distributions, developing ef-
ficient methods to learn the model parameters has attracted
lots of attentions. Existing algorithms including the popular
fixed-point algorithms focus on learning the shape parame-
ters and scatter matrices, but convergence is only established
when the shape parameters are taken as given. When cou-
pled with the shape parameters, convergence properties of
the existing alternating algorithms remain unknown. In this
paper, globally convergent algorithms based on the block
majorization minimization method are proposed to jointly
learn all the model parameters in the maximum likelihood
estimation setting. The negative log-likelihood function w.r.t.
the shape parameter is proved to be strictly convex, which
to our best knowledge is the first result of this kind in the
literature. Superior performance of the proposed algorithms
are validated numerically based on synthetic data with com-
parisons to existing methods.

I. INTRODUCTION
The multivariate generalized Gaussian distribution (MGG-

D) [1], a.k.a. multivariate exponential power distribution [2],
has aroused a great interest in the signal processing commu-
nity. Since it is flexible and powerful in modeling data with
different distribution properties, they have been intensively
used in many signal processing applications including image
denoising [3], image/video segmentation [4], video coding
[5], computer vision [6], ultrawide bandwidth communica-
tions [7], biomedical signal processing [8], radar signal pro-
cessing [9], [10], and financial signal processing [11], [12].

Generally speaking, MGGD belongs to the family of el-
liptical distributions. The probability density function of an
MGGD [13] for x ∈ Rp is given as follows:1

f(x;µ,Σ, β) =
βΓ
(
p
2

)
2
p
2β (π)

p
2 Γ
(
p

2β

) 1

det(Σ)
1
2

× exp

[
−
(
(x− µ)TΣ−1(x− µ)

)β
2

]
,

(1)

where µ ∈ Rp is the location vector, Σ ∈ Sp×p++ is the
scatter matrix (a.k.a. scale/dispersion matrix), β ∈ (0,+∞)
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1In the literature, Σ is commonly factorized as Σ = mM. It should be
noted that algorithms proposed in this paper are also applicable to this case.

is the shape parameter, and Γ(·) denotes the gamma function
defined by Γ (x) =

´∞
0
tx−1e−tdt. The shape parameter β

characterizes the peakedness and spread of the MGGDs [14].
When β = 1, it corresponds to the multivariate Gaussian
distribution. The marginal distribution of the MGGD is more
peaky with heavy tails if β < 1 (Specifically, it becomes
a multivariate Laplacian distribution when β = 1

2 .) and
less peaky with light tails if β > 1 (When β → ∞, it
tends to converge to a multivariate uniform distribution.).
Motivated by practical applications like in image processing,
array signal processing, and financial signal processing, the
cases when β ∈ (0, 1] are usually more interesting [15].

Considering the broad applications of MGGDs, learning
the model parameters efficiently and accurately becomes an
important task. In the literature, several methods have been
proposed to solve the MGGD parameter learning problem
based on methods like the maximum likelihood estimation
(MLE) method and the method of moments. This paper will
focus on the MLE for MGGDs. In [16], the scatter matrix
is estimated based on the fixed-point (FP) iteration given
a known β ∈ (0, 1], which is proved to converge to the
unique global optimal solution. If the shape parameter is
unknown, a heuristic algorithm combining FP and Newton’s
method (a.k.a. Newton-Raphson method) was adopted. In
[17], [18], it was proved that the MLE objective w.r.t. the
scatter matrix is geodesic convex on the Riemannian mani-
fold for all β > 0. And to tackle the cases when β is larger
than 1, manifold-based methods like Riemannian averaged
FP (RA-FP) algorithm [19] and Fisher scoring method [20]
were proposed. The Riemannian averaged natural gradient
method was also developed in [21] to make the parameter
learning process amenable to the online scenarios.

In literature, most existing algorithms mainly discuss the
estimation of the scatter matrix and the convergence is es-
tablished when the shape parameter is known. When β is
unknown, the convergence property of the heuristic alter-
nating minimization based method is actually not evident
[22]. As a matter of fact, the landscape of the negative log-
likelihood function w.r.t. the shape parameter β is crucial
to characterize the convergence of the existing estimation
algorithms. In the literature, all the algorithms conduct the
estimation of β by one-dimensional search algorithms such
as the Newton’s method. However, the local convergence na-
ture of the Newton’s method put the convergence guarantee
of these algorithms at stake.

In this paper, to jointly learn all the model parameters
we proposed two globally convergent algorithms based on
the block majorization minimization (BMM) method [23],
which has been studied in various application fields [24]–
[26]. Besides that, we prove the negative log-likelihood func-
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tion w.r.t. the shape parameter β is actually strictly convex
for all β > 0, which to some extent reveals the underlying
principle behind the success of many existing MGGD learn-
ing algorithms and to the best of our knowledge is the first
result of this kind in the literature.

II. PROBLEM FORMULATION
Let xi ∈ Rp with i = 1, 2, . . . , N (N � p) follow

an MGGD distribution with parameters µ, Σ, and β. The
log-likelihood function for N independent and identically
distributed samples {x1,x2, ...,xN} is accordingly given by

`(µ,Σ, β) =N

[
−p log π

2
+ log Γ(

p

2
) + log β − p log 2

2

1

β

− log Γ(
p

2β
)

]
− N

2
log det(Σ)

− 1

2

N∑
i=1

(
(xi − µ)TΣ−1(xi − µ)

)β
.

In this paper, we are interested in jointly learning all the
MGGD parameters, i.e., {µ,Σ, β} and we will focus on
the problem when β ∈ (0, 1] since values of β encountered
in most practical applications belong to this interval [15],
[16]. Based on the log-likelihood function above (ignoring
the constants), the MLE problem for MGGD is as follows:

minimize
µ,Σ,β

−N
[
log β − p log 2

2

1

β
− log Γ(

p

2β
)

]
+
N

2
log det(Σ) +

1

2

N∑
i=1

(
(xi − µ)TΣ−1(xi − µ)

)β
subject to Σ � 0, 0 ≤ β ≤ 1,

(2)

which is a non-convex optimization problem2. In the liter-
ature, the location parameter µ is always assumed to be
known, say, by being estimated beforehand, and then we
can always reduce the variable µ from the log-likelihood
function by centering each sample as xi = xi − µ. In this
paper, we will study jointly learning the model parameters,
but the algorithm and convergence result are also applicable
to the case of centered samples, i.e., µ = 0.

III. THE BMM METHOD
An optimization problem with the variable x partitioned

into I blocks as x ,
(
x1,x2, . . . ,xI

)
is given as follows:

minimize
x,(x1,x2,...,xI)

f
(
x1,x2, . . . ,xI

)
subject to xi ∈ Xi,

where f : RN → R is a possibly non-convex objective
function of x ∈ RN with xi ∈ RNi and

∑I
i=1Ni = N ,

and Xi’s are closed convex sets. Instead of dealing with the
original optimization problem which could be difficult to
tackle directly, starting from an initial point x0 the BMM
method resolve the problem by solving a series of simple
surrogate subproblems w.r.t. one single variable block each

2In the problem formulation, the constraints for Σ and β have been
relaxed to be closed sets, which can be proved to be equivalent to the
original ones by showing the objective is unbounded above at the boundary.
The proof has been omitted in this conference paper.

time [23]. Specifically, at the t-th iteration, the variable block
xi is updated according to the following update rules:{

xit ∈ arg min
xi∈Xi

fi(x
i,xt−1),

x−it = x−it−1, with x−i ,
(
x1, . . . ,xi−1,xi+1, . . . ,xI

)
,

where fi is a surrogate function majorizing f w.r.t. xi [27].
The BMM method iteratively runs until some convergence
criterion is met. The surrogate function in BMM can be
chosen in a flexible way but a properly chosen one can
lead to a light-weight iterative update while maintaining a
fast convergence over iterations. In practice, the surrogate
subproblems will be much applaudable if they are convex
(hence, efficiently solvable) or obtain closed-form solutions.

IV. A TWO-BLOCK BMM ALGORITHM FOR
MGGD PARAMETER LEARNING

In this section, we develop an efficient algorithm based on
BMM to solve the MLE of MGGD given in Problem (2).

The {µ,Σ}-Subproblem. For Problem (2), given the it-
erate {µt,Σt, βt}, the subproblem w.r.t. {µ,Σ} is given by

min
µ,Σ�0

N

2
log det(Σ) +

1

2

N∑
i=1

(
(xi − µ)TΣ−1(xi − µ)

)βt
,

where we denote the objective function as Fµ,Σ(µ,Σ |
µt,Σt, βt). Then we introduce the following useful result.

Lemma 1. Function f(y) = yp (0 ≤ p ≤ 1), which is
concave on y ∈ [0,+∞), is upperbounded at yt as follows:

yp ≤ pyp−1
t (y − yt) + ypt .

Proof: It is easy to verify f(y) is differentiable in y
with a convex domain. It follows a function f is concave iff
f(y) ≤ f(x) +∇f(x)T (y − x) for all x, y ∈ domf .

Based on Lemma 1, we can derive an upperbound function
for Fµ,Σ(µ,Σ | µt,Σt, βt) at iterate {µt,Σt, βt} as follows:

Fµ(µ,Σ | µt,Σt, βt) =
N

2
log det(Σ) (3)

+
1

2
βt

N∑
i=1

ωi(µt,Σt, βt)(xi − µ)TΣ−1(xi − µ) + const.,

where ωi(µt,Σt, βt) =
[
(xi − µt)

TΣ−1
t (xi − µt)

]βt−1
.

Setting the partial derivatives of (3) w.r.t. µ and Σ to zeros
leads to the following update equations for {µt+1,Σt+1}:

µt+1 =

∑N
i=1 ωi(µt,Σt)xi∑N
i=1 ωi(µt,Σt)

Σt+1 =
βt
N

N∑
i=1

ωi(µt,Σt)(xi − µt)(xi − µt)
T .

(4)

Lemma 2. The pair (µt+1,Σt+1) given by (4) uniquely
minimizes the surrogate function in (3).

Proof: This can be proved by solving the equivalent
iterated minimization problem minΣ�0 minµ Fµ,Σ(µ,Σ).

The β-Subproblem. Given iterate {µt+1,Σt+1, βt}, the
subproblem w.r.t. β is given in the following form:

2021 IEEE Statistical Signal Processing Workshop (SSP)

978-1-7281-5767-2/21/$31.00 ©2021 IEEE 337

Authorized licensed use limited to: Northwestern University. Downloaded on January 16,2023 at 23:00:32 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 A Two-Block BMM Alg. for MLE of MGGD
Initialization of {µ0,Σ0, β0} and t = 0.
while t ≤ MaxIteration do

1) update {µt+1,Σt+1} by Equation (4)
2) update βt+1 = arg minβ∈[0,1] Fβ(β | µt+1,Σt+1, βt)
3) t← t+ 1

end while

min
β∈[0,1]

−N
[
log β − p log 2

2

1

β
− log Γ(

p

2β
)

]
+

1

2

N∑
i=1

yβi,t,

where we have defined yi,t = (xi−µt+1)TΣ−1
t+1(xi−µt+1)

and we also denote the objective as Fβ(β | µt+1,Σt+1, βt).

Theorem 3 (Strict Convexity of Fβ). The objective function
Fβ(β | µt+1,Σt+1, βt) with β ∈ (0,+∞) is strictly convex.

Proof: Due to space limitation, we only provide a sketch
of the proof. Some results on the digamma function ψ(·) =
Γ′(·)
Γ(·) and trigamma function ψ′(·) are firstly given [28], [29].

Fact 1: As x→ +∞, ψ(x) ≈ log x− 1
2x−

1
12x2 + 1

120x4 −
1

252x6 , and ψ′(x) ≈ 1
x + 1

2x2 + 1
6x3 − 1

30x5 + 1
42x7 .

Fact 2: When x > 0, ψ(x+ 1) = ψ(x) + 1
x .

Fact 3: For all x > 0, ψ(x) > log
(
x+ 1

2

)
− 1

x .
Differentiating Fβ(β | µt+1,Σt+1, βt) twice will lead to

F ′′β (β) = 4N
p2 z

4p(z) + q(z), where we have defined z =
p

2β > 0, p(z) = 1
z2 + 2

z (log 2 + ψ(z)) + ψ′(z), and q(z) =
1
2

∑N
i=1(log yi)

2y
p
2z
i with yi = (xi − µt+1)TΣ−1

t+1(xi −
µt+1) > 0. We will prove the strict convexity of the
objective function Fβ(β) w.r.t. β by equivalently show-
ing F ′′β (β) is strictly positive. From Fact 1, we have
limz→+∞

4
p2 z

4p(z) > 0. Thus, there exists a positive
constant N0 > 1 such that p(z) > 0 for all z ≥ N0. If we
can prove p(z) > p(z+ 1), we can get p(z) > p(z+ 1) > 0
for z ∈ [N0 − 1, N0) and hence p(z) > 0 for all z > 0 by
induction. Based on Fact 2, the problem that p(z) > p(z+1)

can be transformed to prove (2 log 2−1)z2+(2 log 2+2)z+2
2z2+2z +

ψ(z) > 0. Further, with Fact 3 the above problem is reduced
to proving u(z) = log 2− z2

2z2+2z+log
(
z + 1

2

)
> 0, which is

straightforward by showing limz→0+ u(z) = 0 and showing
u(z) is a monotonic decreasing function. Thus, we have
p(z) > 0 for all z > 0. Combining that q(z) > 0 for all
z > 0, we obtain that F ′′β (β) > 0 for all β > 0.

Based on Theorem 3, solution of the β-subproblem is
unique. Many one-dimensional numerical methods can be
used to solve for β, such as the bisection method or the New-
ton’s method with line search. Finally, the overall BMM-
based algorithm is summarized in Algorithm 1.

V. A THREE-BLOCK BMM ALGORITHM FOR
MGGD PARAMETER LEARNING

In this section, we propose an alternative algorithm based
on BMM where three variable blocks are involved.

The µ-Subproblem. Given the iterate {µt,Σt, βt}, the
MLE subproblem w.r.t. variable µ is given as follows:

min
µ

1

2

N∑
i=1

(
(xi − µ)TΣ−1

t (xi − µ)
)βt

.

Algorithm 2 A Three-Block BMM Alg. for MLE of MGGD
Initialization of {µ0,Σ0, β0} and t = 0.
while t ≤ MaxIteration do

1) update µt+1 by Equation (6)
2) update Σt+1 by Equation (8)
3) update βt+1 = arg minβ Fβ∈[0,1](β | µt+1,Σt+1, βt)
4) t← t+ 1

end while

Denote the objective function as Fµ(µ | µt,Σt, βt), which is
generally non-convex in µ (when βt 6= 1). Based on Lemma
1, we can obtain an upperbound function which is given by

Fµ(µ | µt,Σt, βt) (5)

=
1

2
βt

N∑
i=1

ωi(µt,Σt, βt)(xi − µ)TΣ−1
t (xi − µ) + const.,

which becomes convex in µ. The µ-subproblem with the
majorized objective (5) can be solved in closed-form by ex-
amining its first-order optimality condition given as follows:

µt+1 =

∑N
i=1 ωi(µt,Σt, βt)xi∑N
i=1 ωi(µt,Σt, βt)

. (6)

The Σ-Subproblem. Given the iterate {µt+1,Σt, βt}, the
MLE subproblem w.r.t. Σ is accordingly given by

min
Σ�0

N

2
log det(Σ)+

1

2

N∑
i=1

(
(xi−µt+1)TΣ−1(xi−µt+1)

)βt
.

Denote the objective function as FΣ(Σ | µt+1,Σt, βt).
Leveraging Lemma 1, we get the upperbound function as

FΣ(Σ | µt+1,Σt, βt) =
N

2
log det(Σ) (7)

+
1

2
βt

N∑
i=1

ωi(µt+1,Σt,βt)(xi−µt+1)
TΣ−1(xi−µt+1)+const.,

which is convex in Σ−1. A unique and optimal solution can
be attained for the update of Σt+1 which is given by

Σt+1 =
βt
N

N∑
i=1

ωi(µt+1,Σt, βt)(xi − µt+1)(xi − µt+1)T .

(8)
It should be noted that, Equation (8) resembles the FP update
proposed in [16]. Therefore, the FP algorithm in [16] can be
interpreted from a majorization minimization perspective.

The β-Subproblem. Given the iterate {µt+1,Σt+1, βt},
the resolution of the β-subproblem is the same as that in the
last section and hence can be solved accordingly. Finally,
the overall BMM algorithm is summarized in Algorithm 2.

Proposition 4 (Convergence Property). Suppose the MLE
estimates of Problem (2) exist, then every limit point, denoted
by {µ∞,Σ∞, β∞}, of the sequence {µt,Σt, βt} generated
by the BMM-based algorithms (i.e., Algorithm 1 and Algo-
rithm 2) is a stationary point of Problem (2).
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Fig. 1. Convergence comparisons between two proposed
BMM algorithms (p = 3, n = 10000, β = 0.8,µ = 1).
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Fig. 2. Convergence comparisons between the proposed
BMM algorithm and existing algorithms (p = 4, n =
1000, β = 0.5).

VI. NUMERICAL SIMULATIONS
In this section, numerical simulations are conducted to

demonstrate the performance of the proposed BMM-based
algorithms with comparisons to some state-of-the-art algo-
rithms. The synthetic data is used where x ∈ Rp is generated
based on the following stochastic representation [2]:

x = τΣ
1
2 u + µ,

where τ is a scalar random variable and Σ is the scatter
matrix which is specified as

Σ(i, j) = mγ|i−j|, i, j = {1, 2, ..., p},

where we have set m = 2 and γ = 0.5.
We first compare the convergence property of the two-

block BMM-based algorithm and three-block BMM-based
algorithm. In BMM, the bisection method has been applied

10-1 100

10-2

10-1

SCM (500 samples)

MGGD (500 samples)

SCM (100 samples)

MGGD (100 samples)

0.9998 0.9999 1

0.102922

0.102928

0.102933

0.9998 0.9999 1

5.8159

5.81592

5.81594

10-3

Fig. 3. Estimation performance of scatter matrix (p =
10,µ = 0).

to determine the shape parameter β. The convergence crite-
rion for all the implemented algorithms in this paper is set as
‖µt+1−µt‖22
‖µt‖22

< 10−5, ‖Σt+1−Σt‖2F
‖Σt‖2F

< 10−5, and |βt+1−βt|
|βt| <

10−5. As shown in Fig. 1, we have observed that these two
algorithms can converge to the same objective value and
the two-block BMM generally obtains a faster convergence
rate compared to the three-block counterpart. We further
demonstrate the convergence comparisons among BMM, FP
[16], and RA-FP [19] which is given in Fig. 2. Since µ is not
estimated in FP and RA-FP, we have ignored the estimation
of µ in our BMM-based algorithm. It can be observed that
BMM outperforms the other two algorithms in terms of CPU
times.

Then, we demonstrate the estimation accuracy of the scat-
ter matrices. In Fig. 3, we compared our BMM-based method
for MGGD MLE with the sample covariance matrix (SCM),
which is equivalent to Gaussian MLE. Since the scatter ma-
trix is a constant-scaled version of the covariance matrix
for MGGD [30], both the estimated values from different
methods and Σtrue are normalized by their trace values. All
the experimental results are averaged over 1000 Monte Carlo
simulations and the estimation error is measured by the rel-
ative mean squared error (RMSE) defined as RMSE(Σ?) =
‖Σ?−Σtrue‖2F
‖Σtrue‖2F

. In Fig. 3, as expected the results from MGGD
can outperform the sample covariance in terms of estimation
accuracy. The superior performance of MGGD over sample
covariance is more pronounced when β is smaller. Also, with
the increasing of sample size N , the estimation errors of all
algorithms decrease accordingly.

VII. CONCLUSIONS
In this paper, two globally convergent algorithms based

on the block majorization minimization method have been
proposed to jointly learn all the model parameters based
on the maximum likelihood estimation, which to our best
knowledge is the first convergent algorithm of this type.
Moreover, the objective function with respect to the shape
parameter is proved to be strictly convex, which to some
extent explains the underlying principle behind the success
of many existing MGGD learning algorithms.
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